Determining Impact of Social Media Badges through Joint Clustering of Temporal Traces and User Features

نویسندگان

  • Tomasz Kusmierczyk
  • Kjetil Nørvåg
چکیده

Badges are a common, and sometimes the only, method of incentivizing users to perform certain actions on online sites. However, due to many competing factors influencing user temporal dynamics, it is difficult to determine whether the badge had (or will have) the intended effect or not. In this paper, we introduce two complementary approaches for determining badge influence on users. In the first one, we cluster users’ temporal traces (represented with point processes) and apply covariates (user features) to regularize results. In the second approach, we first classify users’ temporal traces with a novel statistical framework, and then we refine the classification results with a semi-supervised clustering of covariates. Outcomes obtained from an evaluation on synthetic datasets and experiments on two badges from a popular Q&A platform confirm that it is possible to validate, characterize and to some extent predict users affected by the badge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gamified Incentives: A Badge Recommendation Model to Improve User Engagement in Social Networking Websites

The online social communities employ several techniques to attract more users to their services. One of the essential demand of these communities is to find efficient ways to attract more users and improve their engagement. For this reason, social media sites typically take advantage of gamification systems to improve users’ participation. Among all the gamification services, badges are the mos...

متن کامل

A Clustering Approach for Evaluation of User Interaction on Facebook Social Network

Social Networks analysis has been an important source of gathering information due to the large amount of data that can be generated from users’ discussions and participation on social media. One way to analyze social networks is by estimating the amount of user interaction and participation in them. This paper addresses this issue by applying the machine learning clustering technique for categ...

متن کامل

A Review of Spatial Factor Modeling Techniques in Recommending Point of Interest Using Location-based Social Network Information

The rapid growth of mobile phone technology and its combination with various technologies like GPS has added location context to social networks and has led to the formation of location-based social networks. In social networking sites, recommender systems are used to recommend points of interest (POIs) to users. Traditional recommender systems, such as film and book recommendations, have a lon...

متن کامل

On Social Network Web Sites: Definition, Features, Architectures and Analysis Tools

Development and usage of online social networking web sites are growing rapidly. Millions members of these web sites publicly articulate mutual "friendship" relations and share user-created contents, such as photos, videos, files, and blogs. The advances in web designing technology and fast growing usage of online resources prompted web designers to improve features and architectures of social ...

متن کامل

On Social Network Web Sites: Definition, Features, Architectures and Analysis Tools

Development and usage of online social networking web sites are growing rapidly. Millions members of these web sites publicly articulate mutual "friendship" relations and share user-created contents, such as photos, videos, files, and blogs. The advances in web designing technology and fast growing usage of online resources prompted web designers to improve features and architectures of social ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.01716  شماره 

صفحات  -

تاریخ انتشار 2017